Science Enabled by Specimen Data

Schubert, M., Marcussen, T., Meseguer, A. S., & Fjellheim, S. (2019). The grass subfamily Pooideae: Cretaceous–Palaeocene origin and climate‐driven Cenozoic diversification. Global Ecology and Biogeography. doi:10.1111/geb.12923 https://doi.org/10.1111/geb.12923

Aim: Frost is among the most dramatic stresses a plant can experience, and complex physiological adaptations are needed to endure long periods of sub‐zero temperatures. Owing to the need to evolve these complex adaptations, transitioning from tropical to temperate climates is regarded as difficult. …

Schubert, M., Groenvold, L., Sandve, S. R., Hvidsten, T. R., & Fjellheim, S. (2019). Evolution of cold acclimation and its role in niche transition in the temperate grass subfamily Pooideae. Plant Physiology, pp.01448.2018. doi:10.1104/pp.18.01448 https://doi.org/10.1104/pp.18.01448

The grass subfamily Pooideae dominates the grass floras in cold temperate regions, and has evolved complex physiological adaptations to cope with extreme environmental conditions like frost, winter and seasonality. One such adaptation is cold acclimation, wherein plants increase their frost toleranc…

Phillips, J., Whitehouse, K., & Maxted, N. (2019). An in situ approach to the conservation of temperate cereal crop wild relatives in the Mediterranean Basin and Asian centre of diversity. Plant Genetic Resources: Characterization and Utilization, 1–11. doi:10.1017/s1479262118000588 https://doi.org/10.1017/S1479262118000588

Cereal crops are one of the most widely consumed and most valuable crops for humankind. The species have been domesticated for over 10,000 years and as such have lost much of the genetic diversity that is present within their wild relatives. Future breeding efforts will require the use of genetic di…

Sheppard, C. S., & Schurr, F. M. (2018). Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Global Ecology and Biogeography. doi:10.1111/geb.12844 https://doi.org/10.1111/geb.12844

Aim: Invasions are dynamic processes. Invasive spread causes the geographical range size of alien species to increase with residence time. However, with time native competitors and antagonists can adapt to invaders. This build‐up of biotic resistance may eventually limit the invader’s performance an…

Wan, J.-Z., Wang, C.-J., & Yu, F.-H. (2019). Large-scale environmental niche variation between clonal and non-clonal plant species: Roles of clonal growth organs and ecoregions. Science of The Total Environment, 652, 1071–1076. doi:10.1016/j.scitotenv.2018.10.280 https://doi.org/10.1016/j.scitotenv.2018.10.280

Clonal plant species can produce genetically identical and potentially independent offspring, and dominate a variety of habitats. The divergent evolutionary mechanisms between clonal and non-clonal plants are interesting areas of ecological research. A number of studies have shown that the environme…

Garroutte, M., Huettmann, F., Webb, C. O., & Ickert-Bond, S. M. (2018). Biogeographic and anthropogenic correlates of Aleutian Islands plant diversity: A machine-learning approach. Journal of Systematics and Evolution, 56(5), 476–497. doi:10.1111/jse.12456 https://doi.org/10.1111/jse.12456

This is the first comprehensive analysis of vascular plant diversity patterns in the Aleutian Islands to identify and quantify the impact of Aleutian Island distance dispersal barriers, geographical, ecological and anthropogenic factors. Data from public Open Access databases, printed floristic acco…