Science Enabled by Specimen Data

Carrasco, J., Price, V., Tulloch, V., & Mills, M. (2020). Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodiversity and Conservation. doi:10.1007/s10531-020-01947-1 https://doi.org/10.1007/s10531-020-01947-1

Madagascar is one of the most biodiverse countries in Africa, due to its level of endemism and species diversity. However, the pressure of human activities threatens the last patches of natural vegetation in the country and conservation decisions are undertaken with limited data availability. In thi…

Asase, A., Sainge, M. N., Radji, R. A., Ugbogu, O. A., & Peterson, A. T. (2020). A new model for efficient, need‐driven progress in generating primary biodiversity information resources. Applications in Plant Sciences, 8(1). doi:10.1002/aps3.11318 https://doi.org/10.1002/aps3.11318

Premise: The field of biodiversity informatics has developed rapidly in recent years, with broad availability of large‐scale information resources. However, online biodiversity information is biased spatially as a result of slow and uneven capture and digitization of existing data resources. The Wes…

Marconi, L., & Armengot, L. (2020). Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment, 287, 106664. doi:10.1016/j.agee.2019.106664 https://doi.org/10.1016/j.agee.2019.106664

In addition to their potential against deforestation and climate change, agroforestry systems may have a relevant role in biodiversity conservation. In this sense, not only species richness per se, but also community composition, including the distribution range of the species, should be considered.…

Nevado, B., Wong, E. L. Y., Osborne, O. G., & Filatov, D. A. (2019). Adaptive Evolution Is Common in Rapid Evolutionary Radiations. Current Biology. doi:10.1016/j.cub.2019.07.059 https://doi.org/10.1016/j.cub.2019.07.059

One of the most long-standing and important mysteries in evolutionary biology is why biological diversity is so unevenly distributed across space and taxonomic lineages. Nowhere is this disparity more evident than in the multitude of rapid evolutionary radiations found on oceanic islands and mountai…

Folk, R. A., Stubbs, R. L., Mort, M. E., Cellinese, N., Allen, J. M., Soltis, P. S., … Guralnick, R. P. (2019). Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences, 116(22), 10874–10882. doi:10.1073/pnas.1817999116 https://doi.org/10.1073/pnas.1817999116

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and…

Karger, D. N., Kessler, M., Conrad, O., Weigelt, P., Kreft, H., König, C., & Zimmermann, N. E. (2019). Why tree lines are lower on islands-Climatic and biogeographic effects hold the answer. Global Ecology and Biogeography. doi:10.1111/geb.12897 https://doi.org/10.1111/geb.12897

Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…

Chevalier, M. (2019). Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Global and Planetary Change, 175, 27–35. doi:10.1016/j.gloplacha.2019.01.016 https://doi.org/10.1016/j.gloplacha.2019.01.016

The field of quantitative palaeoclimatology has made significant progress in the past decades. However, this progress has been spatially heterogeneous and strong discrepancies – both in terms of quality and density – exist between Europe and North America and the rest of the world. The need to balan…

Gagnon, E., Ringelberg, J. J., Bruneau, A., Lewis, G. P., & Hughes, C. E. (2018). Global Succulent Biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae). New Phytologist. doi:10.1111/nph.15633 https://doi.org/10.1111/nph.15633

The extent to which phylogenetic biome conservatism versus biome shifting determine global patterns of biodiversity remains poorly understood. To address this question, we investigate the biogeography and trajectories of biome and growth form evolution across the Caesalpinia Group (Leguminosae), a c…

Park, D. S., & Razafindratsima, O. H. (2018). Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography, 42(1), 148–161. doi:10.1111/ecog.03825 https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …

VÁZQUEZ-GARCÍA, J.-A., NEILL, D. A., SHALISKO, V., ARROYO, F., & MERINO-SANTI, R. E. (2018). Magnolia mercedesiarum (subsect. Talauma, Magnoliaceae): a new Andean species from northern Ecuador, with insights into its potential distribution. Phytotaxa, 348(4), 254. doi:10.11646/phytotaxa.348.4.2 https://doi.org/10.11646/phytotaxa.348.4.2

Magnolia mercedesiarum, a new species from the eastern slopes of the Andes in northern Ecuador, is described and illustrated, and a key to Ecuadorian Magnolia (subsect. Talauma) is provided. This species differs from M. vargasiana in having broadly elliptic leaves that have an obtuse base vs. suborb…